Capítulo 1

INTRODUCCIÓN A LAS REDES NEURONALES ARTIFICIALES.

1 INTRODUCCIÓN A LAS REDES NEURONALES ARTIFICIALES

El cerebro es un procesador de información con unas características muy notables: es capaz de procesar a gran velocidad grandes cantidades de información procedentes de los entidos, combinarla o compararla con la información almacenada y dar respuestas adecuadas incluso en situaciones nuevas. Logra discernir un susurro en una sala ruidosa, distinguir una cara en una calle mal iluminada o leer entre líneas en una declaración política; pero lo más impresionante de todo es su capacidad de aprender a representar la información necesaria para desarrollar tales habilidades sin instrucciones explícitas para ello.

Aunque todavía se ignora mucho sobre la forma en que el cerebro aprende a procesar la información, se han desarrollado modelos que tratan de mimetizar tales habilidades; denominados redes neuronales artificiales ó modelos de computación conexionista (otras denominaciones son computación neuronal y procesamiento distribuido paralelo o P.D.P.). La elaboración de estos modelos supone en primer lugar la deducción de los rasgos o características esenciales de las neuronas y sus conexiones, y en segundo lugar, la implementación del modelo en una computadora de forma que se pueda simular. Es obvio decir que estos modelos son idealizaciones burdas de las auténticas redes neuronales, en muchos casos de dudosa plausibilidad neurofisiológica, pero que sin embargo resultan interesantes cuando menos por sus capacidades de aprendizaje.

De la prehistoria al futuro que tal vez Babbage nunca soñó. El desarrollo de máquinas que puedan imitar la capacidad de aprendizaje del hombre, es actualmente un desafío en el que pone sus miras buena parte de la comunidad científica. Con esta amplia introducción a las redes neuronales, se pretende dar a conocer los elementos básicos de lo que comúnmente se denomina Inteligencia Artificial, para así comprender de qué modo pueden llegar a «pensar» y «aprender» las máquinas.

El hombre se ha caracterizado siempre por una búsqueda constante de nuevas vías para mejorar sus condiciones de vida. Estos esfuerzos le han servido para reducir el trabajo en aquellas operaciones en las que la fuerza juega un papel primordial. Los progresos obtenidos han permitido dirigir estos esfuerzos a otros campos, como por ejemplo, a la construcción de máquinas calculadoras que ayuden a resolver de forma automática y rápida determinadas operaciones que resultan tediosas cuando se realizan a mano

.

Uno de los primeros en acometer esta empresa fue Charles Babbage, quien trató infructuosamente de construir una máquina capaz de resolver problemas matemáticos. Posteriormente, otros tantos intentaron construir máquinas similares, pero no fue hasta la Segunda Guerra Mundial, cuando ya se disponía de instrumentos electrónicos, que se empezaron a recoger los primeros frutos. En 1946, se construyó la primera computadora electrónica, ENIAC. Desde entonces los desarrollos en este campo han tenido un auge espectacular.

Estas máquinas permiten implementar fácilmente algoritmos para resolver multitud de problemas que antes resultaban engorrosos de resolver. Sin embargo, se observa una limitación importante: ¿Qué ocurre cuando el problema que se quiere resolver no admite un tratamiento algorítmico, como es el caso, por ejemplo, de la clasificación de objetos por rasgos comunes? Este ejemplo, demuestra que la construcción de nuevas máquinas más versátiles requiere un enfoque del problema desde otro punto de vista.

Los desarrollos actuales de los científicos se dirigen al estudio de las capacidades humanas como una fuente de nuevas ideas para el diseño de las nuevas máquinas. Así, la inteligencia artificial es un intento por descubrir y describir aspectos de la inteligencia humana que pueden ser simulados mediante máquinas. Esta disciplina se ha desarrollado fuertemente en los últimos años teniendo aplicación en algunos campos como visión artificial, demostración de teoremas, procesamiento de información expresada mediante lenguajes humanos, etc.

Las redes neuronales son otra forma de emular otra de las características propias de los humanos: la capacidad de memorizar y asociar hechos. Si examinamos con atención aquellos problemas que no pueden expresarse a través de un algoritmo nos daremos cuenta de que todos ellos tienen una característica común: la experiencia. El hombre es capaz de resolver estas situaciones acudiendo a la experiencia acumulada. Así, parece claro que una forma de aproximarse al problema consista en la construcción de sistemas que sean capaces de reproducir esta característica humana. En definitiva, las redes neuronales no son más que un modelo artificial y simplificado del cerebro humano, que es el ejemplo más perfecto del que disponemos de sistema que es capaz de adquirir conocimiento a través de la experiencia. Una red neuronal es «un nuevo sistema para el tratamiento de la información cuya unidad básica de procesamiento está inspirada en la célula fundamental del sistema nervioso humano, la neurona».

atras indice adelante